Fuzzy C-Means Algorithm with a Point Symmetry Distance
نویسندگان
چکیده
In this paper, a modified version of the FCM algorithm is presented to deal with clusters with totally different geometrical properties. The proposed algorithm adopts a novel non-metric distance measure based on the idea of "point symmetry". Experimental results on several data sets are presented to illustrate its effectiveness.
منابع مشابه
A Fuzzy C-means Algorithm for Clustering Fuzzy Data and Its Application in Clustering Incomplete Data
The fuzzy c-means clustering algorithm is a useful tool for clustering; but it is convenient only for crisp complete data. In this article, an enhancement of the algorithm is proposed which is suitable for clustering trapezoidal fuzzy data. A linear ranking function is used to define a distance for trapezoidal fuzzy data. Then, as an application, a method based on the proposed algorithm is pres...
متن کاملA Hybrid Time Series Clustering Method Based on Fuzzy C-Means Algorithm: An Agreement Based Clustering Approach
In recent years, the advancement of information gathering technologies such as GPS and GSM networks have led to huge complex datasets such as time series and trajectories. As a result it is essential to use appropriate methods to analyze the produced large raw datasets. Extracting useful information from large data sets has always been one of the most important challenges in different sciences,...
متن کاملFuzzy Symmetry Based Real-Coded Genetic Clustering Technique for Automatic Pixel Classification in Remote Sensing Imagery
The problem of classifying an image into different homogeneous regions is viewed as the task of clustering the pixels in the intensity space. In particular, satellite images contain landcover types some of which cover significantly large areas, while some (e.g., bridges and roads) occupy relatively much smaller regions. Automatically detecting regions or clusters of such widely varying sizes pr...
متن کاملOPTIMIZATION OF FUZZY CLUSTERING CRITERIA BY A HYBRID PSO AND FUZZY C-MEANS CLUSTERING ALGORITHM
This paper presents an efficient hybrid method, namely fuzzy particleswarm optimization (FPSO) and fuzzy c-means (FCM) algorithms, to solve the fuzzyclustering problem, especially for large sizes. When the problem becomes large, theFCM algorithm may result in uneven distribution of data, making it difficult to findan optimal solution in reasonable amount of time. The PSO algorithm does find ago...
متن کاملRefining membership degrees obtained from fuzzy C-means by re-fuzzification
Fuzzy C-mean (FCM) is the most well-known and widely-used fuzzy clustering algorithm. However, one of the weaknesses of the FCM is the way it assigns membership degrees to data which is based on the distance to the cluster centers. Unfortunately, the membership degrees are determined without considering the shape and density of the clusters. In this paper, we propose an algorithm which takes th...
متن کامل